© John Phillips 2006
Revision 3

Page 1 of 5

Object-Oriented Programming: Constructors

(Alternate Title: Not Conductors)
[image: image1.png]

Part of the VGA Teaches Stuff series
Introduction

The audience I am planning to give this to (namely my fellow OOP/Java students) may not be ready for it (as we haven’t gotten to Chapter 4, yet), but maybe the people who know more about it than me can help revise it a few more times before the rest of the class catches up. To Mr. Ross, I’m sorry if I’m stepping on your toes by jumping ahead, but I heard my fellow classmates were confused about constructors.

Like my concepts article, this article reflects my understanding of the topic. It’s been revised before and it’ll be revised again. In the meantime, double check your text book, or do something crazy like ask the instructor. Actually, asking the instructor to explain things we haven’t covered yet might not be that good of an idea.

I’ll be using OOP terms as well as snowman analogies throughout this article. If you have no idea what that means, I recommend reading the “Object Oriented Programming: Concepts” article first. This article is just to explain what a constructor is and what it does and does not cover passing arguments or overloaded constructors.
What Are Constructors?

As Wu/Otani says, “A constructor is a special method that is executed when a new instance of the class is created, that is when the ‘new’ operator is called.” Basically, when you instantiate an object out of a class, the constructor method is called. For those of you who took Visual Basic .Net, when a form loads it fires the Form_Load event in which you put all of the code statements to be executed upon initial instantiation of the form. This is the same concept. The constructor is a method within a class that has the same name as the method and is called when you create an object. The statement

Fred = new snowman(); // Java syntax
essentially calls the “snowman” method from the “snowman” class. Now to be more accurate, from a terminology standpoint, a “constructor” is not a “method” like a “method” is not a “function” even though they are quite similar. Understanding the terminology is very important as communication between programmers is vital especially in an OOP environment where everyone is instantiating everyone else’s classes (like in the snowman army analogy).

What Do Constructors Do?

Constructors are in charge of filling in the default values of objects. Just like in Form_Load where you set all the initial values of properties and such, constructors do the same thing. The example in the book, they have a bicycle class:
class Bicycle {

private String ownerName;

public Bicycle() {

ownerName = “Unknown”;

}

}
(I left out the other methods, getOwnerName and setOwnerName).

Assuming the actual code in the program was “bike1 = new Bicycle();” then this constructor has initialized bike1.ownerName to “Unknown.” Also, important to note is that ownerName is a “private” property. Therefore the user who instantiated the object cannot access bike1.ownerName directly. Instead they must use the “getOwnerName” method (which is defined later on in that same class) to access the ownerName variable. This is part of the encapsulation/“data hiding” which I discussed in the concepts article.

We can apply the same concept to the snowman class:

class Snowman {

private String name; // name of the snowman

private Boolean melted; // melted or not (used in “melt” method)
private int height; // height of the snowman
public Snowman() {

name = “Jack Frost”; // snowmen named Jack Frost by default

melted = False; // all snowmen are created equal…er…solid

height = 10; // default height for snowmen
}
public void melt() {

melted = True;

height = 0;

}
}
This example is basically the same as the bicycle, but here I added an integer to keep track of the snowman height and the Boolean (True/False) value “melted” which I guess would track whether or not the snowman has died a slow, painful death as a result of overexposure to the Sun. Anyway, the reason I included that is to illustrate a point about encapsulation. The “melt” method may include some very important lines of code that must be run for the object to continue functioning. If I were to set the melted Boolean to “public” then the person using my class would be able to use “snowman1.melted = true” instead of calling the “melt” method, and they would be bypassing all of the important stuff (like setting the height to 0).
Can I Pass An Argument To A Constructor?

Short answer, yes. Wu divided “defining your own classes” into two parts and I’ll do the same (that is if someone wants me to make section 2). I’ll leave passing an argument for section 2 (even though Wu does it in section 1) as many of you probably don’t know what arguments and parameters are.

What Are Overloaded Constructors?
I will also leave that to section 2 (as Wu did). Revision 1 of this text tried to explain overloaded constructors/methods and I think that’s where I lost Cliff. Therefore, I took it out of here.
Conclusion/Revision History

Revision 3

Basically, this revision was clarifying something for a friend. What I did here was revise the “What Do Constructors Do?” section and elaborate on the encapsulation example which really isn’t that important if you read the concepts article (.

Revision 2

For those of you who got a copy of revision 1 which I wrote in 15 minutes during another class instead of watching Windows 2000 Server install itself, this has been updated. I have actually used the text book to try and match their terminology and include some Java syntax instead of Visual Basic .Net in order to reduce confusion. I also have actual typed out code instead of rushed screenshots of the IDE. Oh, and I included the copyright in the header (. Also, I think I went into too much detail about accepting different numbers of arguments (overloaded constructors/methods). I think that might be a little too confusing right off the bat. In this version, I tried to stick to the basics.
