© John Phillips 2006
Revision 2

Page 1 of 6

Object-Oriented Programming: Overloading
(Alternate Title: Not Conductors Either)
[image: image1.jpg]2

Part of the VGA Teaches Stuff series
Introduction

In my original 15 minute constructors article, I talked about overloading. I think that confused a few people, so I broke it into two parts. This is part 2. Part 1 described what a constructor is and what they do. Here I explain what arguments and parameters are and creating multiple methods with the same name (overloading).
Arguments and Parameters

Before I get into overloading, let’s make sure you know what arguments and parameters are. In my constructors article, I used simple constructors with no parameters. I explained that constructors are similar to methods. Like methods, they can accept arguments. Arguments are external values you send to a method. Parameters are the internal variables of the method that correspond to the values sent to it.

An example (in Java) of a constructor that accepts an argument:

snowmanWarrior1 = new SnowmanWarrior(“Greg”);

The corresponding constructor within the SnowmanWarrior class:

class SnowmanWarrior {

private String name;

private snowmanWarrior(String inputStr){

name = inputStr;

}
}
The result of that would be an object called snowmanWarrior1 with “Greg” as its name property. In the first part, “Greg” is the argument. Then in the second part, you see inputStr is the corresponding parameter that is used within the method (which in this case is a constructor).

You can send multiple arguments to a method as long as the method has the corresponding number and type of parameters. For example,

snowmanWarrior2 = new SnowmanWarrior(“Cliff”, 6.3, “Warhammer”);

and

class SnowmanWarrior {

private String name;

private float height;

private String weapon;

private snowmanWarrior(String one, float two, String three){

name = one;

height = two;

weapon = three;

}
}
However, if you had only the original constructor from the first example (which is expecting only a string), the snowmanWarrior2 line of code would cause an error. Similarly, if we change the height to an integer in the class,

private int height;

private snowmanWarrior(String one, int two, String three){

The snowmanWarrior2 instantiation would also cause an error here because although the number of parameters matches the number of arguments, the types don’t match (6.3 is not an integer).
Overloading

Overloading is having multiple methods (or constructors) with the same name and typically the same basic function. The purpose is to give the programmer using the class freedom of how much control they have versus how much work they have to do. For instance, person A might want to define 10 different attributes as soon as the object is instantiated. Person B might want to set one or two variables and leave the rest at the default (the reason these values are the default is because they work for most people, but the few people who want to change them need to be able to). The solution is to have two types of the same method (i.e. overloaded methods). How do we do that? We just combine examples 1 and 2. The instantiations haven’t changed (we’re just using both now to prove we can use either).

snowmanWarrior1 = new SnowmanWarrior(“Greg”);

snowmanWarrior2 = new SnowmanWarrior(“Cliff”, 6.3, “Warhammer”);

but the class includes both constructors:

class SnowmanWarrior {

private String name;

private float height;

private String weapon;
private snowmanWarrior(String inputStr){

name = inputStr;

height = 5.5; // default height

weapon = “Snowball”; // default weapon

}

private snowmanWarrior(String one, float two, String three){

name = one;

height = two;

weapon = three;

}
}
The result would be that “Greg” is given the default height and weapon and “Cliff” has the weapons we specified for him. Therefore, if someone wants to choose every attribute of their object they can, but if someone wants to use the defaults they have that option as well (and have less code to write).

I’m gonna go one step further with this but try not to get lost. Example 3 up there with the two separate constructors would work but is generally not a good idea. What’s wrong? Well, the problem here is that if you were to change one thing about how your class is instantiated, you have to correct every single constructor (which could be quite a few). The solution? Java has a keyword this which calls another constructor of the same class. If we change the first constructor to reference the second constructor like so:
class SnowmanWarrior {

private String name;

private float height;

private String weapon;
private snowmanWarrior(String inputStr){
this(inputStr, 5.5, “Snowball”); // call the other

constructor

}

private snowmanWarrior(String one, float two, String three){

name = one;

height = two;

weapon = three;

}
}
Then we can alter all the constructors just by altering the one constructor that all the other constructors reference. The reserved word this can also be used to call a method of the same class for instance “this.melt()”

The concept of overloading applies to all methods, not just constructors. The following examples use Visual Basic .Net because it has this nice little tooltip popup to help explain what goes next (and because I already had the screenshots from revision 1 so I figured I’d keep them ().

Figure 1: [image: image2.png]Private

End
Clas|

Dinm
Din
Din

Sub Forml Load(ByVal sender is System.Object, Byb
testinteger As Integer

testString s String

numberStyle hs System.Globalization.NuberStyles

testInteger.Parse (testString)

testinteger.Parse [testString, mumberStyle:
testInteger.Parse|

S 1o 4% Parse (s As String) As Integer]
s A string containing a number to convert.

First, you can see I declared a few variables. testInteger is an object of the Integer class. Parse is a method of the Integer class (and therefore testInteger has it). Within the Integer class there are multiple versions of the Parse method. That means there are multiple methods of the class that have the same name (“Parse”), but each one takes a different number and/or type of arguments. In Visual Basic .Net, when you type “testInteger.Parse(” then it will bring up the tooltip to show you what goes next. Each “page” of the tooltip describes a different possible set of arguments to use with the Parse method:

Figure 2: [image: image3.png]42of 4w Parse (s As String, style As System.Globalization.NumberStyles) As Integer
style: The combination of one or more System. Globalization. NumberStylesconstants that indica

As you can see in Figure 1, I used “testInteger.Parse(testString)” first. That is using the 1st version of Parse as shown in the tooltip of figure 1. The second command “testInteger.Parse(testString, numberStyle)” uses the 2nd version of the Parse method which accepts 2 arguments (first a String, then a NumberStyle just like the tooltip in figure 2). Version 2 allows you to specify a NumberStyle whereas version 1 exists so that you don’t need to specify a NumberStyle if you don’t want to.
Conclusion/Revision History

For those of you keeping up, so far we’ve got:

Fred

Type: SnowmanWarrior

Weapon: Crossbow

Jessica

Type: SnowmanWarrior

Weapon: Crossbow

Jennifer

Type: SnowmanWarrior

Weapon: Sword

John

Type: SnowmanWarrior

Weapon: Catapult

Steve

Type: SnowmanFirefighter

Greg

Type: SnowmanWarrior

Height: 5.5

Weapon: Snowball

Cliff

Type: SnowmanWarrior

Height: 6.3

Weapon: Warhammer

For the 3 of you who have seen revision 1, this is the same thing but a little more detailed (and possibly coherent, but then again, it’s still written by me). Hopefully, you’ve read the constructors article and this stuff is no longer over your heads. If you need further clarification you can just ask (.
